

PI: Parag Kshirsagar, Raytheon Technologies Research Center

Project Vision

Disrupting Multi-MW Class Aircraft Propulsion through extreme power density:

- Fully Superconducting AC motor
- Cryocooled motor drive and
- Adaptive Magnetocaloric Cryo-cooler

REEACH / ASCEND / CABLES
Annual Program Review Meeting
June 28-30, 2022

Turbo-Electric

Background: 20MW Electrified Aircraft

Electric Propulsion System

Power density of components: X3 - X4 over SOA Today

20MW Series Turbo-electric

- Electric propulsion technology to achieve fuel savings for given configuration
 - Electric System Efficiency and Specific Power
 - Breakeven curves: fuel weight reduction equals weight of electric drive system
 - Above curves, net benefit

P. Kshirsagar et.al. AIAA 2020, Adapted from Jansen et al. 2015, 2017.

Raytheon Technologies

SOARING Overview

20MW Conceptual Aircraft Cryofuel (Bio-LNG) Enabled Power System

Fully Superconducting Motor (ACSYM) Direct Drive (no-gear)

2.5MW, 5000rpm, 20K Efficiency > 99%

Motor Drive (CROWN)

2.5MW, 120K Efficiency > 99%

Magnetocaloric cryocooler (AMAC)

120K to 20K (AMAC) COP target 0.6 (3x over SOA), Power density Target 4W/kg (3x to 5x over SOA)

Phase-1: 40W Demonstration

Phase-1: Conceptual Design

SOARING: Team Organization

SOARING: TMS Performance + Motor + Power Electronics

Phase-1 Demo

MOTOR

40 W 120K to 20K (AMAC) COP target 0.6 (3x over SOA), Power density 4W/kg (3x to 5x over SOA) High Field Magnet Design

Rotary Seal Testing

Rotating regenerator frame design

Phase-1 Concept Design

Superconducting Motor Take off Efficiency > 99% Direct Drive (no-gearbox) Design tradeoffs

Weight Losses

AC Superconductors

Manufacturing, packaging,
cooling, and loss estimation

Wind and react manufacturing, direct cooling channels

Phase-1 Concept Design

Cryo Motor Drive Takeoff Efficiency > 99% Input filter DO-160, Output THD < 1%

No EMI filter

DO-160 standard

Y-caps + choke

Y-caps only

Frequency (Hz)

Power Module, Busbar, Capacitor Cooling

Low power Cryogenic converter testing

SOARING Risk Update

Risk	#	Trend
Manufacturing, support and cooling of the SC coils, AC Losses	1	1
Effectiveness of the seals at cryo temperatures	2	1
High lead losses between motor and drive	3	↓
Weight of AMAC	4	
Low cost high strength DC magnets for AMAC	5	↓
Cost of the SOARING system	6	

Technology-to-Market Approach

Superconducting motors scales better at higher power levels

Looking Ahead – What is anticipated for an Eventual Phase II?

- Phase I
 - Motor: Proof of concept stator coil coupon
 - AMAC Demo
- Phase II.
 - Preliminary design of motor, motor drive and TMS
 - Detailed design of motor, motor drive and TMS
 - Sub-component integration and scaled demonstration
- T2M during the eventual Phase II.
 - Aerospace Applications: Collaboration with Propulsion partner,
 Airframer, and Airliner
 - Liquid hydrogen applications (Liquefier manufacturers)
 - Non-Aerospace Applications: Transportation Vehicles, and Space Applications

AMAC Demonstration setup at PNNL

Q & A

https://arpa-e.energy.gov

